Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if1(true, x, y, xs) → min(x, xs)
if1(false, x, y, xs) → min(y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
minsort(nil) → nil
minsort(cons(x, y)) → cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) → x
min(x, cons(y, z)) → if1(le(x, y), x, y, z)
del(x, nil) → nil
del(x, cons(y, z)) → if2(eq(x, y), x, y, z)

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if1(true, x, y, xs) → min(x, xs)
if1(false, x, y, xs) → min(y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
minsort(nil) → nil
minsort(cons(x, y)) → cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) → x
min(x, cons(y, z)) → if1(le(x, y), x, y, z)
del(x, nil) → nil
del(x, cons(y, z)) → if2(eq(x, y), x, y, z)

Q is empty.

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if1(true, x, y, xs) → min(x, xs)
if1(false, x, y, xs) → min(y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
minsort(nil) → nil
minsort(cons(x, y)) → cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) → x
min(x, cons(y, z)) → if1(le(x, y), x, y, z)
del(x, nil) → nil
del(x, cons(y, z)) → if2(eq(x, y), x, y, z)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
minsort(nil)
minsort(cons(x0, x1))
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))


Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)
EQ(s(x), s(y)) → EQ(x, y)
IF1(true, x, y, xs) → MIN(x, xs)
IF1(false, x, y, xs) → MIN(y, xs)
IF2(false, x, y, xs) → DEL(x, xs)
MINSORT(cons(x, y)) → MIN(x, y)
MINSORT(cons(x, y)) → MINSORT(del(min(x, y), cons(x, y)))
MINSORT(cons(x, y)) → DEL(min(x, y), cons(x, y))
MIN(x, cons(y, z)) → IF1(le(x, y), x, y, z)
MIN(x, cons(y, z)) → LE(x, y)
DEL(x, cons(y, z)) → IF2(eq(x, y), x, y, z)
DEL(x, cons(y, z)) → EQ(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if1(true, x, y, xs) → min(x, xs)
if1(false, x, y, xs) → min(y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
minsort(nil) → nil
minsort(cons(x, y)) → cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) → x
min(x, cons(y, z)) → if1(le(x, y), x, y, z)
del(x, nil) → nil
del(x, cons(y, z)) → if2(eq(x, y), x, y, z)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
minsort(nil)
minsort(cons(x0, x1))
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)
EQ(s(x), s(y)) → EQ(x, y)
IF1(true, x, y, xs) → MIN(x, xs)
IF1(false, x, y, xs) → MIN(y, xs)
IF2(false, x, y, xs) → DEL(x, xs)
MINSORT(cons(x, y)) → MIN(x, y)
MINSORT(cons(x, y)) → MINSORT(del(min(x, y), cons(x, y)))
MINSORT(cons(x, y)) → DEL(min(x, y), cons(x, y))
MIN(x, cons(y, z)) → IF1(le(x, y), x, y, z)
MIN(x, cons(y, z)) → LE(x, y)
DEL(x, cons(y, z)) → IF2(eq(x, y), x, y, z)
DEL(x, cons(y, z)) → EQ(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if1(true, x, y, xs) → min(x, xs)
if1(false, x, y, xs) → min(y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
minsort(nil) → nil
minsort(cons(x, y)) → cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) → x
min(x, cons(y, z)) → if1(le(x, y), x, y, z)
del(x, nil) → nil
del(x, cons(y, z)) → if2(eq(x, y), x, y, z)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
minsort(nil)
minsort(cons(x0, x1))
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 4 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if1(true, x, y, xs) → min(x, xs)
if1(false, x, y, xs) → min(y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
minsort(nil) → nil
minsort(cons(x, y)) → cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) → x
min(x, cons(y, z)) → if1(le(x, y), x, y, z)
del(x, nil) → nil
del(x, cons(y, z)) → if2(eq(x, y), x, y, z)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
minsort(nil)
minsort(cons(x0, x1))
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

R is empty.
The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
minsort(nil)
minsort(cons(x0, x1))
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
minsort(nil)
minsort(cons(x0, x1))
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DEL(x, cons(y, z)) → IF2(eq(x, y), x, y, z)
IF2(false, x, y, xs) → DEL(x, xs)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if1(true, x, y, xs) → min(x, xs)
if1(false, x, y, xs) → min(y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
minsort(nil) → nil
minsort(cons(x, y)) → cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) → x
min(x, cons(y, z)) → if1(le(x, y), x, y, z)
del(x, nil) → nil
del(x, cons(y, z)) → if2(eq(x, y), x, y, z)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
minsort(nil)
minsort(cons(x0, x1))
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DEL(x, cons(y, z)) → IF2(eq(x, y), x, y, z)
IF2(false, x, y, xs) → DEL(x, xs)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
minsort(nil)
minsort(cons(x0, x1))
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
minsort(nil)
minsort(cons(x0, x1))
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DEL(x, cons(y, z)) → IF2(eq(x, y), x, y, z)
IF2(false, x, y, xs) → DEL(x, xs)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if1(true, x, y, xs) → min(x, xs)
if1(false, x, y, xs) → min(y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
minsort(nil) → nil
minsort(cons(x, y)) → cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) → x
min(x, cons(y, z)) → if1(le(x, y), x, y, z)
del(x, nil) → nil
del(x, cons(y, z)) → if2(eq(x, y), x, y, z)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
minsort(nil)
minsort(cons(x0, x1))
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

R is empty.
The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
minsort(nil)
minsort(cons(x0, x1))
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
minsort(nil)
minsort(cons(x0, x1))
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MIN(x, cons(y, z)) → IF1(le(x, y), x, y, z)
IF1(true, x, y, xs) → MIN(x, xs)
IF1(false, x, y, xs) → MIN(y, xs)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if1(true, x, y, xs) → min(x, xs)
if1(false, x, y, xs) → min(y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
minsort(nil) → nil
minsort(cons(x, y)) → cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) → x
min(x, cons(y, z)) → if1(le(x, y), x, y, z)
del(x, nil) → nil
del(x, cons(y, z)) → if2(eq(x, y), x, y, z)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
minsort(nil)
minsort(cons(x0, x1))
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MIN(x, cons(y, z)) → IF1(le(x, y), x, y, z)
IF1(true, x, y, xs) → MIN(x, xs)
IF1(false, x, y, xs) → MIN(y, xs)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
minsort(nil)
minsort(cons(x0, x1))
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
minsort(nil)
minsort(cons(x0, x1))
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MIN(x, cons(y, z)) → IF1(le(x, y), x, y, z)
IF1(true, x, y, xs) → MIN(x, xs)
IF1(false, x, y, xs) → MIN(y, xs)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

MINSORT(cons(x, y)) → MINSORT(del(min(x, y), cons(x, y)))

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if1(true, x, y, xs) → min(x, xs)
if1(false, x, y, xs) → min(y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
minsort(nil) → nil
minsort(cons(x, y)) → cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) → x
min(x, cons(y, z)) → if1(le(x, y), x, y, z)
del(x, nil) → nil
del(x, cons(y, z)) → if2(eq(x, y), x, y, z)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
minsort(nil)
minsort(cons(x0, x1))
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

MINSORT(cons(x, y)) → MINSORT(del(min(x, y), cons(x, y)))

The TRS R consists of the following rules:

min(x, nil) → x
if1(true, x, y, xs) → min(x, xs)
min(x, cons(y, z)) → if1(le(x, y), x, y, z)
if1(false, x, y, xs) → min(y, xs)
del(x, cons(y, z)) → if2(eq(x, y), x, y, z)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
del(x, nil) → nil
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
minsort(nil)
minsort(cons(x0, x1))
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minsort(nil)
minsort(cons(x0, x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ Induction-Processor

Q DP problem:
The TRS P consists of the following rules:

MINSORT(cons(x, y)) → MINSORT(del(min(x, y), cons(x, y)))

The TRS R consists of the following rules:

min(x, nil) → x
if1(true, x, y, xs) → min(x, xs)
min(x, cons(y, z)) → if1(le(x, y), x, y, z)
if1(false, x, y, xs) → min(y, xs)
del(x, cons(y, z)) → if2(eq(x, y), x, y, z)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
del(x, nil) → nil
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

This DP could be deleted by the Induction-Processor:
MINSORT(cons(x', y')) → MINSORT(del(min(x', y'), cons(x', y')))


This order was computed:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(MINSORT(x1)) = x1   
POL(cons(x1, x2)) = 1 + x1 + x2   
POL(del(x1, x2)) = x2   
POL(eq(x1, x2)) = x2   
POL(false) = 0   
POL(if1(x1, x2, x3, x4)) = 1 + x2 + x3 + x4   
POL(if2(x1, x2, x3, x4)) = 1 + x3 + x4   
POL(le(x1, x2)) = 1   
POL(min(x1, x2)) = 1 + x1 + x2   
POL(nil) = 0   
POL(s(x1)) = 1 + x1   
POL(true) = 0   

At least one of these decreasing rules is always used after the deleted DP:
if2(true, x1127, y937, xs357) → xs357


The following formula is valid:
x':sort[a0],y':sort[a32].del'(min(x' , y' ), cons(x' , y' ))=true


The transformed set:
del'(x49, cons(y40, z7)) → if2'(eq(x49, y40), x49, y40, z7)
if2'(true, x112, y93, xs35) → true
if2'(false, x125, y104, xs40) → del'(x125, xs40)
del'(x138, nil) → false
min(x', nil) → x'
if1(true, x10, y7, xs1) → min(x10, xs1)
min(x23, cons(y18, z2)) → if1(le(x23, y18), x23, y18, z2)
if1(false, x36, y29, xs10) → min(y29, xs10)
del(x49, cons(y40, z7)) → if2(eq(x49, y40), x49, y40, z7)
eq(0, 0) → true
eq(0, s(y61)) → false
eq(s(x86), 0) → false
eq(s(x99), s(y82)) → eq(x99, y82)
if2(true, x112, y93, xs35) → xs35
if2(false, x125, y104, xs40) → cons(y104, del(x125, xs40))
del(x138, nil) → nil
le(0, y125) → true
le(s(x163), 0) → false
le(s(x176), s(y146)) → le(x176, y146)
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a32](nil, nil) → true
equal_sort[a32](nil, cons(x0, x1)) → false
equal_sort[a32](cons(x0, x1), nil) → false
equal_sort[a32](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a32](x0, x2), equal_sort[a32](x1, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61]) → true


↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
QDP
                              ↳ PisEmptyProof
                            ↳ QTRS

Q DP problem:
P is empty.
The TRS R consists of the following rules:

min(x, nil) → x
if1(true, x, y, xs) → min(x, xs)
min(x, cons(y, z)) → if1(le(x, y), x, y, z)
if1(false, x, y, xs) → min(y, xs)
del(x, cons(y, z)) → if2(eq(x, y), x, y, z)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
del(x, nil) → nil
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
min(x0, nil)
min(x0, cons(x1, x2))
del(x0, nil)
del(x0, cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
QTRS
                              ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

del'(x49, cons(y40, z7)) → if2'(eq(x49, y40), x49, y40, z7)
if2'(true, x112, y93, xs35) → true
if2'(false, x125, y104, xs40) → del'(x125, xs40)
del'(x138, nil) → false
min(x', nil) → x'
if1(true, x10, y7, xs1) → min(x10, xs1)
min(x23, cons(y18, z2)) → if1(le(x23, y18), x23, y18, z2)
if1(false, x36, y29, xs10) → min(y29, xs10)
del(x49, cons(y40, z7)) → if2(eq(x49, y40), x49, y40, z7)
eq(0, 0) → true
eq(0, s(y61)) → false
eq(s(x86), 0) → false
eq(s(x99), s(y82)) → eq(x99, y82)
if2(true, x112, y93, xs35) → xs35
if2(false, x125, y104, xs40) → cons(y104, del(x125, xs40))
del(x138, nil) → nil
le(0, y125) → true
le(s(x163), 0) → false
le(s(x176), s(y146)) → le(x176, y146)
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a32](nil, nil) → true
equal_sort[a32](nil, cons(x0, x1)) → false
equal_sort[a32](cons(x0, x1), nil) → false
equal_sort[a32](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a32](x0, x2), equal_sort[a32](x1, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61]) → true

Q is empty.

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
QTRS
                                  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

del'(x49, cons(y40, z7)) → if2'(eq(x49, y40), x49, y40, z7)
if2'(true, x112, y93, xs35) → true
if2'(false, x125, y104, xs40) → del'(x125, xs40)
del'(x138, nil) → false
min(x', nil) → x'
if1(true, x10, y7, xs1) → min(x10, xs1)
min(x23, cons(y18, z2)) → if1(le(x23, y18), x23, y18, z2)
if1(false, x36, y29, xs10) → min(y29, xs10)
del(x49, cons(y40, z7)) → if2(eq(x49, y40), x49, y40, z7)
eq(0, 0) → true
eq(0, s(y61)) → false
eq(s(x86), 0) → false
eq(s(x99), s(y82)) → eq(x99, y82)
if2(true, x112, y93, xs35) → xs35
if2(false, x125, y104, xs40) → cons(y104, del(x125, xs40))
del(x138, nil) → nil
le(0, y125) → true
le(s(x163), 0) → false
le(s(x176), s(y146)) → le(x176, y146)
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a32](nil, nil) → true
equal_sort[a32](nil, cons(x0, x1)) → false
equal_sort[a32](cons(x0, x1), nil) → false
equal_sort[a32](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a32](x0, x2), equal_sort[a32](x1, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61]) → true

The set Q consists of the following terms:

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])


Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

DEL'(x49, cons(y40, z7)) → IF2'(eq(x49, y40), x49, y40, z7)
DEL'(x49, cons(y40, z7)) → EQ(x49, y40)
IF2'(false, x125, y104, xs40) → DEL'(x125, xs40)
IF1(true, x10, y7, xs1) → MIN(x10, xs1)
MIN(x23, cons(y18, z2)) → IF1(le(x23, y18), x23, y18, z2)
MIN(x23, cons(y18, z2)) → LE(x23, y18)
IF1(false, x36, y29, xs10) → MIN(y29, xs10)
DEL(x49, cons(y40, z7)) → IF2(eq(x49, y40), x49, y40, z7)
DEL(x49, cons(y40, z7)) → EQ(x49, y40)
EQ(s(x99), s(y82)) → EQ(x99, y82)
IF2(false, x125, y104, xs40) → DEL(x125, xs40)
LE(s(x176), s(y146)) → LE(x176, y146)
EQUAL_SORT[A0](s(x0), s(x1)) → EQUAL_SORT[A0](x0, x1)
EQUAL_SORT[A32](cons(x0, x1), cons(x2, x3)) → AND(equal_sort[a32](x0, x2), equal_sort[a32](x1, x3))
EQUAL_SORT[A32](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A32](x0, x2)
EQUAL_SORT[A32](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A32](x1, x3)

The TRS R consists of the following rules:

del'(x49, cons(y40, z7)) → if2'(eq(x49, y40), x49, y40, z7)
if2'(true, x112, y93, xs35) → true
if2'(false, x125, y104, xs40) → del'(x125, xs40)
del'(x138, nil) → false
min(x', nil) → x'
if1(true, x10, y7, xs1) → min(x10, xs1)
min(x23, cons(y18, z2)) → if1(le(x23, y18), x23, y18, z2)
if1(false, x36, y29, xs10) → min(y29, xs10)
del(x49, cons(y40, z7)) → if2(eq(x49, y40), x49, y40, z7)
eq(0, 0) → true
eq(0, s(y61)) → false
eq(s(x86), 0) → false
eq(s(x99), s(y82)) → eq(x99, y82)
if2(true, x112, y93, xs35) → xs35
if2(false, x125, y104, xs40) → cons(y104, del(x125, xs40))
del(x138, nil) → nil
le(0, y125) → true
le(s(x163), 0) → false
le(s(x176), s(y146)) → le(x176, y146)
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a32](nil, nil) → true
equal_sort[a32](nil, cons(x0, x1)) → false
equal_sort[a32](cons(x0, x1), nil) → false
equal_sort[a32](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a32](x0, x2), equal_sort[a32](x1, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61]) → true

The set Q consists of the following terms:

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
QDP
                                      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

DEL'(x49, cons(y40, z7)) → IF2'(eq(x49, y40), x49, y40, z7)
DEL'(x49, cons(y40, z7)) → EQ(x49, y40)
IF2'(false, x125, y104, xs40) → DEL'(x125, xs40)
IF1(true, x10, y7, xs1) → MIN(x10, xs1)
MIN(x23, cons(y18, z2)) → IF1(le(x23, y18), x23, y18, z2)
MIN(x23, cons(y18, z2)) → LE(x23, y18)
IF1(false, x36, y29, xs10) → MIN(y29, xs10)
DEL(x49, cons(y40, z7)) → IF2(eq(x49, y40), x49, y40, z7)
DEL(x49, cons(y40, z7)) → EQ(x49, y40)
EQ(s(x99), s(y82)) → EQ(x99, y82)
IF2(false, x125, y104, xs40) → DEL(x125, xs40)
LE(s(x176), s(y146)) → LE(x176, y146)
EQUAL_SORT[A0](s(x0), s(x1)) → EQUAL_SORT[A0](x0, x1)
EQUAL_SORT[A32](cons(x0, x1), cons(x2, x3)) → AND(equal_sort[a32](x0, x2), equal_sort[a32](x1, x3))
EQUAL_SORT[A32](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A32](x0, x2)
EQUAL_SORT[A32](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A32](x1, x3)

The TRS R consists of the following rules:

del'(x49, cons(y40, z7)) → if2'(eq(x49, y40), x49, y40, z7)
if2'(true, x112, y93, xs35) → true
if2'(false, x125, y104, xs40) → del'(x125, xs40)
del'(x138, nil) → false
min(x', nil) → x'
if1(true, x10, y7, xs1) → min(x10, xs1)
min(x23, cons(y18, z2)) → if1(le(x23, y18), x23, y18, z2)
if1(false, x36, y29, xs10) → min(y29, xs10)
del(x49, cons(y40, z7)) → if2(eq(x49, y40), x49, y40, z7)
eq(0, 0) → true
eq(0, s(y61)) → false
eq(s(x86), 0) → false
eq(s(x99), s(y82)) → eq(x99, y82)
if2(true, x112, y93, xs35) → xs35
if2(false, x125, y104, xs40) → cons(y104, del(x125, xs40))
del(x138, nil) → nil
le(0, y125) → true
le(s(x163), 0) → false
le(s(x176), s(y146)) → le(x176, y146)
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a32](nil, nil) → true
equal_sort[a32](nil, cons(x0, x1)) → false
equal_sort[a32](cons(x0, x1), nil) → false
equal_sort[a32](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a32](x0, x2), equal_sort[a32](x1, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61]) → true

The set Q consists of the following terms:

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 4 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
QDP
                                            ↳ UsableRulesProof
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQUAL_SORT[A32](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A32](x1, x3)
EQUAL_SORT[A32](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A32](x0, x2)

The TRS R consists of the following rules:

del'(x49, cons(y40, z7)) → if2'(eq(x49, y40), x49, y40, z7)
if2'(true, x112, y93, xs35) → true
if2'(false, x125, y104, xs40) → del'(x125, xs40)
del'(x138, nil) → false
min(x', nil) → x'
if1(true, x10, y7, xs1) → min(x10, xs1)
min(x23, cons(y18, z2)) → if1(le(x23, y18), x23, y18, z2)
if1(false, x36, y29, xs10) → min(y29, xs10)
del(x49, cons(y40, z7)) → if2(eq(x49, y40), x49, y40, z7)
eq(0, 0) → true
eq(0, s(y61)) → false
eq(s(x86), 0) → false
eq(s(x99), s(y82)) → eq(x99, y82)
if2(true, x112, y93, xs35) → xs35
if2(false, x125, y104, xs40) → cons(y104, del(x125, xs40))
del(x138, nil) → nil
le(0, y125) → true
le(s(x163), 0) → false
le(s(x176), s(y146)) → le(x176, y146)
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a32](nil, nil) → true
equal_sort[a32](nil, cons(x0, x1)) → false
equal_sort[a32](cons(x0, x1), nil) → false
equal_sort[a32](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a32](x0, x2), equal_sort[a32](x1, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61]) → true

The set Q consists of the following terms:

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ QReductionProof
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQUAL_SORT[A32](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A32](x1, x3)
EQUAL_SORT[A32](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A32](x0, x2)

R is empty.
The set Q consists of the following terms:

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
QDP
                                                    ↳ QDPSizeChangeProof
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQUAL_SORT[A32](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A32](x1, x3)
EQUAL_SORT[A32](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A32](x0, x2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
QDP
                                            ↳ UsableRulesProof
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQUAL_SORT[A0](s(x0), s(x1)) → EQUAL_SORT[A0](x0, x1)

The TRS R consists of the following rules:

del'(x49, cons(y40, z7)) → if2'(eq(x49, y40), x49, y40, z7)
if2'(true, x112, y93, xs35) → true
if2'(false, x125, y104, xs40) → del'(x125, xs40)
del'(x138, nil) → false
min(x', nil) → x'
if1(true, x10, y7, xs1) → min(x10, xs1)
min(x23, cons(y18, z2)) → if1(le(x23, y18), x23, y18, z2)
if1(false, x36, y29, xs10) → min(y29, xs10)
del(x49, cons(y40, z7)) → if2(eq(x49, y40), x49, y40, z7)
eq(0, 0) → true
eq(0, s(y61)) → false
eq(s(x86), 0) → false
eq(s(x99), s(y82)) → eq(x99, y82)
if2(true, x112, y93, xs35) → xs35
if2(false, x125, y104, xs40) → cons(y104, del(x125, xs40))
del(x138, nil) → nil
le(0, y125) → true
le(s(x163), 0) → false
le(s(x176), s(y146)) → le(x176, y146)
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a32](nil, nil) → true
equal_sort[a32](nil, cons(x0, x1)) → false
equal_sort[a32](cons(x0, x1), nil) → false
equal_sort[a32](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a32](x0, x2), equal_sort[a32](x1, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61]) → true

The set Q consists of the following terms:

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ QReductionProof
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQUAL_SORT[A0](s(x0), s(x1)) → EQUAL_SORT[A0](x0, x1)

R is empty.
The set Q consists of the following terms:

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
QDP
                                                    ↳ QDPSizeChangeProof
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQUAL_SORT[A0](s(x0), s(x1)) → EQUAL_SORT[A0](x0, x1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
QDP
                                            ↳ UsableRulesProof
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(x176), s(y146)) → LE(x176, y146)

The TRS R consists of the following rules:

del'(x49, cons(y40, z7)) → if2'(eq(x49, y40), x49, y40, z7)
if2'(true, x112, y93, xs35) → true
if2'(false, x125, y104, xs40) → del'(x125, xs40)
del'(x138, nil) → false
min(x', nil) → x'
if1(true, x10, y7, xs1) → min(x10, xs1)
min(x23, cons(y18, z2)) → if1(le(x23, y18), x23, y18, z2)
if1(false, x36, y29, xs10) → min(y29, xs10)
del(x49, cons(y40, z7)) → if2(eq(x49, y40), x49, y40, z7)
eq(0, 0) → true
eq(0, s(y61)) → false
eq(s(x86), 0) → false
eq(s(x99), s(y82)) → eq(x99, y82)
if2(true, x112, y93, xs35) → xs35
if2(false, x125, y104, xs40) → cons(y104, del(x125, xs40))
del(x138, nil) → nil
le(0, y125) → true
le(s(x163), 0) → false
le(s(x176), s(y146)) → le(x176, y146)
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a32](nil, nil) → true
equal_sort[a32](nil, cons(x0, x1)) → false
equal_sort[a32](cons(x0, x1), nil) → false
equal_sort[a32](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a32](x0, x2), equal_sort[a32](x1, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61]) → true

The set Q consists of the following terms:

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ QReductionProof
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(x176), s(y146)) → LE(x176, y146)

R is empty.
The set Q consists of the following terms:

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
QDP
                                                    ↳ QDPSizeChangeProof
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(x176), s(y146)) → LE(x176, y146)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
QDP
                                            ↳ UsableRulesProof
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x99), s(y82)) → EQ(x99, y82)

The TRS R consists of the following rules:

del'(x49, cons(y40, z7)) → if2'(eq(x49, y40), x49, y40, z7)
if2'(true, x112, y93, xs35) → true
if2'(false, x125, y104, xs40) → del'(x125, xs40)
del'(x138, nil) → false
min(x', nil) → x'
if1(true, x10, y7, xs1) → min(x10, xs1)
min(x23, cons(y18, z2)) → if1(le(x23, y18), x23, y18, z2)
if1(false, x36, y29, xs10) → min(y29, xs10)
del(x49, cons(y40, z7)) → if2(eq(x49, y40), x49, y40, z7)
eq(0, 0) → true
eq(0, s(y61)) → false
eq(s(x86), 0) → false
eq(s(x99), s(y82)) → eq(x99, y82)
if2(true, x112, y93, xs35) → xs35
if2(false, x125, y104, xs40) → cons(y104, del(x125, xs40))
del(x138, nil) → nil
le(0, y125) → true
le(s(x163), 0) → false
le(s(x176), s(y146)) → le(x176, y146)
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a32](nil, nil) → true
equal_sort[a32](nil, cons(x0, x1)) → false
equal_sort[a32](cons(x0, x1), nil) → false
equal_sort[a32](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a32](x0, x2), equal_sort[a32](x1, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61]) → true

The set Q consists of the following terms:

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ QReductionProof
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x99), s(y82)) → EQ(x99, y82)

R is empty.
The set Q consists of the following terms:

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
QDP
                                                    ↳ QDPSizeChangeProof
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x99), s(y82)) → EQ(x99, y82)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
QDP
                                            ↳ UsableRulesProof
                                          ↳ QDP
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF2(false, x125, y104, xs40) → DEL(x125, xs40)
DEL(x49, cons(y40, z7)) → IF2(eq(x49, y40), x49, y40, z7)

The TRS R consists of the following rules:

del'(x49, cons(y40, z7)) → if2'(eq(x49, y40), x49, y40, z7)
if2'(true, x112, y93, xs35) → true
if2'(false, x125, y104, xs40) → del'(x125, xs40)
del'(x138, nil) → false
min(x', nil) → x'
if1(true, x10, y7, xs1) → min(x10, xs1)
min(x23, cons(y18, z2)) → if1(le(x23, y18), x23, y18, z2)
if1(false, x36, y29, xs10) → min(y29, xs10)
del(x49, cons(y40, z7)) → if2(eq(x49, y40), x49, y40, z7)
eq(0, 0) → true
eq(0, s(y61)) → false
eq(s(x86), 0) → false
eq(s(x99), s(y82)) → eq(x99, y82)
if2(true, x112, y93, xs35) → xs35
if2(false, x125, y104, xs40) → cons(y104, del(x125, xs40))
del(x138, nil) → nil
le(0, y125) → true
le(s(x163), 0) → false
le(s(x176), s(y146)) → le(x176, y146)
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a32](nil, nil) → true
equal_sort[a32](nil, cons(x0, x1)) → false
equal_sort[a32](cons(x0, x1), nil) → false
equal_sort[a32](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a32](x0, x2), equal_sort[a32](x1, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61]) → true

The set Q consists of the following terms:

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ QReductionProof
                                          ↳ QDP
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF2(false, x125, y104, xs40) → DEL(x125, xs40)
DEL(x49, cons(y40, z7)) → IF2(eq(x49, y40), x49, y40, z7)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(y61)) → false
eq(s(x86), 0) → false
eq(s(x99), s(y82)) → eq(x99, y82)

The set Q consists of the following terms:

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
QDP
                                                    ↳ QDPSizeChangeProof
                                          ↳ QDP
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF2(false, x125, y104, xs40) → DEL(x125, xs40)
DEL(x49, cons(y40, z7)) → IF2(eq(x49, y40), x49, y40, z7)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(y61)) → false
eq(s(x86), 0) → false
eq(s(x99), s(y82)) → eq(x99, y82)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
QDP
                                            ↳ UsableRulesProof
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MIN(x23, cons(y18, z2)) → IF1(le(x23, y18), x23, y18, z2)
IF1(true, x10, y7, xs1) → MIN(x10, xs1)
IF1(false, x36, y29, xs10) → MIN(y29, xs10)

The TRS R consists of the following rules:

del'(x49, cons(y40, z7)) → if2'(eq(x49, y40), x49, y40, z7)
if2'(true, x112, y93, xs35) → true
if2'(false, x125, y104, xs40) → del'(x125, xs40)
del'(x138, nil) → false
min(x', nil) → x'
if1(true, x10, y7, xs1) → min(x10, xs1)
min(x23, cons(y18, z2)) → if1(le(x23, y18), x23, y18, z2)
if1(false, x36, y29, xs10) → min(y29, xs10)
del(x49, cons(y40, z7)) → if2(eq(x49, y40), x49, y40, z7)
eq(0, 0) → true
eq(0, s(y61)) → false
eq(s(x86), 0) → false
eq(s(x99), s(y82)) → eq(x99, y82)
if2(true, x112, y93, xs35) → xs35
if2(false, x125, y104, xs40) → cons(y104, del(x125, xs40))
del(x138, nil) → nil
le(0, y125) → true
le(s(x163), 0) → false
le(s(x176), s(y146)) → le(x176, y146)
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a32](nil, nil) → true
equal_sort[a32](nil, cons(x0, x1)) → false
equal_sort[a32](cons(x0, x1), nil) → false
equal_sort[a32](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a32](x0, x2), equal_sort[a32](x1, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61]) → true

The set Q consists of the following terms:

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ QReductionProof
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MIN(x23, cons(y18, z2)) → IF1(le(x23, y18), x23, y18, z2)
IF1(true, x10, y7, xs1) → MIN(x10, xs1)
IF1(false, x36, y29, xs10) → MIN(y29, xs10)

The TRS R consists of the following rules:

le(0, y125) → true
le(s(x163), 0) → false
le(s(x176), s(y146)) → le(x176, y146)

The set Q consists of the following terms:

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
QDP
                                                    ↳ QDPSizeChangeProof
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MIN(x23, cons(y18, z2)) → IF1(le(x23, y18), x23, y18, z2)
IF1(true, x10, y7, xs1) → MIN(x10, xs1)
IF1(false, x36, y29, xs10) → MIN(y29, xs10)

The TRS R consists of the following rules:

le(0, y125) → true
le(s(x163), 0) → false
le(s(x176), s(y146)) → le(x176, y146)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
QDP
                                            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF2'(false, x125, y104, xs40) → DEL'(x125, xs40)
DEL'(x49, cons(y40, z7)) → IF2'(eq(x49, y40), x49, y40, z7)

The TRS R consists of the following rules:

del'(x49, cons(y40, z7)) → if2'(eq(x49, y40), x49, y40, z7)
if2'(true, x112, y93, xs35) → true
if2'(false, x125, y104, xs40) → del'(x125, xs40)
del'(x138, nil) → false
min(x', nil) → x'
if1(true, x10, y7, xs1) → min(x10, xs1)
min(x23, cons(y18, z2)) → if1(le(x23, y18), x23, y18, z2)
if1(false, x36, y29, xs10) → min(y29, xs10)
del(x49, cons(y40, z7)) → if2(eq(x49, y40), x49, y40, z7)
eq(0, 0) → true
eq(0, s(y61)) → false
eq(s(x86), 0) → false
eq(s(x99), s(y82)) → eq(x99, y82)
if2(true, x112, y93, xs35) → xs35
if2(false, x125, y104, xs40) → cons(y104, del(x125, xs40))
del(x138, nil) → nil
le(0, y125) → true
le(s(x163), 0) → false
le(s(x176), s(y146)) → le(x176, y146)
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a32](nil, nil) → true
equal_sort[a32](nil, cons(x0, x1)) → false
equal_sort[a32](cons(x0, x1), nil) → false
equal_sort[a32](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a32](x0, x2), equal_sort[a32](x1, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61]) → true

The set Q consists of the following terms:

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

IF2'(false, x125, y104, xs40) → DEL'(x125, xs40)
DEL'(x49, cons(y40, z7)) → IF2'(eq(x49, y40), x49, y40, z7)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(y61)) → false
eq(s(x86), 0) → false
eq(s(x99), s(y82)) → eq(x99, y82)

The set Q consists of the following terms:

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
min(x0, nil)
if1(true, x0, x1, x2)
min(x0, cons(x1, x2))
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a32](nil, nil)
equal_sort[a32](nil, cons(x0, x1))
equal_sort[a32](cons(x0, x1), nil)
equal_sort[a32](cons(x0, x1), cons(x2, x3))
equal_sort[a61](witness_sort[a61], witness_sort[a61])



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Induction-Processor
                          ↳ AND
                            ↳ QDP
                            ↳ QTRS
                              ↳ Overlay + Local Confluence
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
QDP
                                                    ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

IF2'(false, x125, y104, xs40) → DEL'(x125, xs40)
DEL'(x49, cons(y40, z7)) → IF2'(eq(x49, y40), x49, y40, z7)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(y61)) → false
eq(s(x86), 0) → false
eq(s(x99), s(y82)) → eq(x99, y82)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: